

CLMC Training

lies

liese

liese

leed

lieed

The seal

Certified Lighting Management Consultant Training

Brian Baker bbaker@emclic.com

Kim Cagle <u>kim.cagle@akenergy.com</u>

> Erik Ennen ENNEN@MNCEE.ORG

San Land Land		Liese	
NALMU SINCE 1753 COMPANIES			
	GLING Lighting Managem	ent Consultant Training	
	Module 1: Course Introductions	Module 5: Retrofit + Design	
	Module 1: Course Introductions Module 2: Overview of Lamps	Module 5: Retrofit + Design Module 6: Lighting Layout	
	Module 1: Course Introductions Module 2: Overview of Lamps Module 3: Ballasts	Module 5: Retrofit + Design Module 6: Lighting Layout Module 7: Legislation	
	Module 1: Course Introductions Module 2: Overview of Lamps Module 3: Ballasts Module 4: LED	Module 5: Retrofit + Design Module 6: Lighting Layout Module 7: Legislation Module 8: Sustainability	

Module One Course Introduction

Logistics Housekeeping, Breaks and Technology

Mission Statement: NALMCO[®] is committed to raising the professional level of its members and the performance of lighting systems by providing education, certification and networking opportunities for the lighting industry.

lieve

The Standard for Lighting Management since 1953.

Quality lighting is the cornerstone of the lighting management profession. NALMCO is committed to promoting quality lighting through the education of members and the business community on the benefits of quality lighting as managed by a professional lighting management company.

NALMCO Value Statements

liese

liese

lieve

liese

4000

NALMCO

liese

Education: The speed of technological development in the lighting industry necessitates rapid response by our organization to provide our members with the means to obtain this knowledge. We seek to provide information and training to our industry practitioners expeditiously and in a concise, unbiased manner.

e vorza avorza vorza avorza avorza avor

N WOREA A WOREA WOREA A WOREA A WOREA A WOR

CLMC Exam

there

JION OF LA

NALMCO'

6000

Module Number	Question Pool	%
Module 1	Characteristics and Proper Usage of Lamps	15%
Module 2	Characteristics and Proper Usage of Ballasts	6%
Module 3a	Characteristics and Proper Usage of Fixtures and Controls: Luminaires and Reflectors	
Module 3b	Characteristics and Proper Usage of Fixtures and Controls: Lighting Controls	14%
Module 4	Lighting Layout Designs and Applications	16 %
Module 5	Energy Conservation Issues as Related to Lighting and Controls	14%
Module 6a	Lighting Maintenance, Recycling, and Disposal Practices: OSHA Rules and Regulations	
Module 6b	Lighting Maintenance, Recycling, and Disposal Practices: Recycling and Disposal	
Module 6c	Lighting Maintenance, Recycling, and Disposal Practices: Lighting Maintenance Practices	18%
Module 7	Sustainable Lighting Practices	17%
	Total	100.00 %

0000

6000

4p

(17)

6000

y

W

Lee

A.

Sw?

Lee

Lee

Course Registration

liese

• Review the CLMC Candidate Handbook and the Application requirements prior to registering for the exam.

liese

liese

leee

- Register for the exam and pay the application fee online at <u>www.NALMCO.org</u>
- Watch your Inbox for exam information, including a link and unique credentials to access the exam.
 - Only open the exam link when you are prepared to begin the exam
- Prepare for the exam

NALMCO

leed

. To DEA OTO DEA TO DEA A TO DEA A TO DEA A TO D

Test Protocol - In person

- 1. Know what--and what not--to bring.
 - Allowed:
 - Pencils
 - Blank paper
 - Non-programmable calculator
 - Not Allowed:
 - Talking
 - Notes
 - Online resources
 - Phone

2. Be considerate of others; avoid behavior that could be distracting to others:

- Do not chew gum
- Turn off phone
- Please be quiet when entering or exiting
- Not adhering to the rules can lead to dismissal from the exam

Test Protocol - Virtual

liese

liese

liese

leee

Exam requirements:

NALMCO

- Google Chrome No exceptions
- Name and Photo ID Match

leed

- The name on your CLMC application and photo ID must match
- Remain in camera view and active
 - Must remain in camera view and engaged with the exam until the exam is complete

Test Protocol - Virtual

liese

liese

liese

liese

Exam requirements:

NALMCO

No Communication/People

leed

- No electronic devices.
- No Headphones
- No external resources i.e. browser tabs
- Calculators ARE permitted

Exam details

leed

liese

liese

liese

leed

• 2.5 hour timed exam

ALMCO

- The exam monitors time
- One question is presented at a time
- Indicate your answer choice by a mouse click
- To change your answer click the new option before moving to the next question
- DO NOT click the back button
- Skip feature moves question(s) to the end of the exam.

Explain the proper usage of lamps.

Describe the characteristics of lamps.

Lamps Incandescent, Fluorescent, HID and LED

Leed

NALMCO

Incandescent

• Halogen

Fluorescent

Compact Fluorescent

hered

lies

Lee

Lee

High Intensity Discharge (HID)

- Mercury
- Metal Halide
- Pulse Start Metal Halide
- Low Pressure Sodium
- High Pressure Sodium

Light Emitting Diodes (LED)

IncandescentLamps Basics

Incandescent Lamps

Leeo

Lee

Lee

Advantages

NALMCO

SINCE 1953

Leed

- Lowest Initial Cost
- Simple to install
- Excellent CRI 100
- Instant starting
- Easy to dim

Disadvantages

Highly inefficient

liese

- Short service life
- Sensitive to vibration

Incandescent Lamp Type

liese

liese

A – Arbitrary, Standard

liese

C – Cone

NALMCO

- CA Candle
- ER Ellipsoidal Reflector
- F Flame
- **G** Globe
- **GT** Globe, Tubular

MR – Multifaceted Reflector

P – Pear

liese

PS – Pear, Straight

liese

- R Reflector
- S Straight
- **T** Tubular
- **PAR** Pressed Aluminized

Prong

Lee

Lee

Lee

Lee

Lee

Incandescent bulbs have different fills, such as:

Argon

NALMCO

- Krypton
- Nitrogen
- Vacuum

Incandescent bulb *lamp life* has a *range of 620 to 8,000 hours*. Examples of lamp life for various bulb types:

- 750 hours: 40 watt, 120V T6.5
- 1,000 hours: 50 watt, 120V A21
- 2,000 hours: 50 watt, 120V R20
- 5,000 hours: 250 watt, 120V R40
- 8,000 hours: 165 watt, 120V P25 (traffic signal lamp)

Halogen Lamps

Lee

Lee

Advantages

Compact size

NALMCO

SINCE 1953

- Excellent lumen maintenance
- Longer life
- Whiter light

Disadvantages

• More costly

(Inde

Lee

Lee

• Not the most energy efficient

Halogen lamps are usually *line-voltage lamps*, which means they use the voltage coming from the power line. Lamp types include:

- Quartz
- PAR
- A-lamp
- Tubular

Halogen lamps can also be *low-voltage lamps* that include a transformer that reduces the voltage to a lower level. Lamp types include:

- Bi-pin
- PAR
- AR
- MR

Fluorescent LampsBasics

Fluorescent Lamp Types

Lee

Lee

(Inde

Lee

Circline

NALMCO

Cold Cathode

1

Lee

- Compact
- Linear
- Reflector
- Spiral
- U-Shape

operation are:

- **1.** *Efficacy*, expressed as lumens per watt (LPW)
- 2. Temperature effects, which include lamp striking and lumen output
- 3. Strobe effect
- **4.** *High frequency operation*, which means when operation is at 20kHz or higher, light energy is converted more efficiently

. To read of the r

• External starter heats the lamps electrodes before the electric arc is made

Instant start

- Do not heat lamps
- High voltage discharge strikes the lamp (264 ma)

Rapid Start

- Ballasts heat the electrodes before lamp starting and during normal operation
- Start quickly with very little flicker
 - Program Rapid Start Only fluorescent ballast suitable for dimming

• 800 ma

Very High Output (VHO)

• 1500 ma

Fluorescent Bases

Lee

Lee

NALMCO

Min Bipin G5

Lee

The seal

Lee

Med Bipin G13

Mog Bipin G20

Single Pin Fa8

Recessed Double Contact R17d

4-Pin G10q (Circline)

Fluorescent Lamp Life

liese

liese

liese

leed

• 24,000-60,000 hours

NALMCO

• Lumen depreciation <10%

liese

 T-5 operates more efficiently at higher temperatures (approx. 11% improvement in lumen output)

Fluorescent Lamp Life

Some *typical lamp life ranges* for fluorescent lamps:

Lamp	3-Hour Start	12-Hour Start
T8 32w 800 XP	24,000	40,000
T8 28w XP	24,000	40,000
T8 54w F96	24,000	36,000
T5 28w HO XL	45,000	60,000
T5 54w HO ECO	30,000	40,000

Compact Fluorescent Lights (CFLs) There are four types of compact pin-base lamps: Twin tube

- Triple tube
- Quad tube
- Dimmable = 4pin

There are eight general configurations of mediumbase retrofit CFL lamps:

- Twin Tube
- Triple Tube
- Quad Tube
- Spiral Tube
- Globe
- Reflector

- Adaptor ballasts
- Self-ballasted

Fluorescent Lamps

liese

leed

Lee

liese

Advantages

- Long service life
- High energy efficiency
- Dimmable

NALMCO

- CRI options
- Color temp options

Disadvantages

- Higher initial cost over
 Incandescent options
- Requires ballast

liese

- Temperature sensitivity
- Shorter lamp life with low hours per start

High Intensity Discharge LampsBasics

The *four main HID lighting types and families*, are:

- 1. High-pressure sodium (HPS): amber or orange in color
- 2. Metal halide (MH): bright white in color
- 3. Mercury vapor (MV): blue-green in color
- 4. Low-pressure sodium (LPS): dark orange or brown in color

HID Lamp Types

liese

- High Pressure Sodium
- Metal Halide

NALMCO

Pulse Start Metal Halide

liese

liese

liese

liese

- Mercury Vapor
- Low Pressure Sodium

0=

Pulse Start Metal Halide

Leee

liese

Advantages of *pulse-start technology* include:

liese

liese

leee

- Better lumen maintenance
- More lumens per watt (LpW)
- Lower starting temperature
- Longer lamp life

NALMCO

- Faster warmup
- Quicker re-strike
- Superior color rendering
- Not as much tungsten deposited on lamp

High Intensity Discharge Lamps

Lee

Lee

Leeo

Advantages

High lumens per watt

Leed

Long lamp life

NALMCO

SINCE 1953

- Multiple wattages available
- Multiple shapes and sizes
- Resistant to extreme temperatures

Disadvantages

 High lumen depreciation

lies

- Long restrike time
- Poor color rendering

Lamp Comparisons Efficacy, Depreciation and Lamp Life

Lamp Efficacies

lies

liese

LPW Comparisons:

NALMCO

liese

liese

liese

Comparative Lamp Life

Lee

NALMCO

SINCE 1953

Lee

Lamp Type	Lamp Life	
Incandescent	600 to 2,000 hours	
Halogen	2,000 to 3,000 hours	
Fluorescent	12,000 to 60,000 hours	
Sodium	12,000 to 24,000+ hours	
Probe Start Metal Halide	8,000 to 20,000 hours	
Pulse Start Metal Halide	8,000 to 26,000 hours	
Mercury	20,000 to 24,000 hours	
LED	100,000 hours	

Lee

The seal

/ Lees

Lamp Depreciation: HID

Lee

Lee

爪

lies

lies

NALMCO

The seal

Module Three Ballasts

Describe the characteristics of ballasts.

Definition: Ballasts

liese

liese

liese

lieve

liese

Ballast

.....

A *ballast* is "an auxiliary piece of equipment required to start and properly control the flow of current to gas discharge light sources such as fluorescent and high-intensity discharge (HID) lamps."

0 0 0 = = =

When discussing ballasts, you should be familiar with the many related acronyms, including:

- **CBM** (Certified Ballast Manufacturers)
- **UL** (Underwriters Laboratories)
- **ETL** (*Electrical Testing Laboratories*)
- **CSA** (Canadian Standards Association)

There are *two key factors* associated with ballasts:

liese

liese

- 1. The Ballast Factor (BF)
- 2. The Power Factor (PF)

The **BF** measures how well a ballast can produce light from the lamp(s) it powers.

It is calculated by *dividing* the lumen output of a particular lamp/ballast combination by the lumen output of the same lamp(s) on a reference ballast.

The *PF* measures the effectiveness with which an electrical device converts volt-amperes to watts. It determines the current drawn by the ballast.

The **PF** can range from 0 to 1.0; here are various categories of **PFs**:

- **High Power Factor** (*HPF*): $PF \ge 0.90$
- **Power Factor Corrected** (*PFC*): 0.80 to 0.89
- Normal Power Factor (*NPF*): PF < 0.87
- Low Power Factor (*LPF*): PF < 0.78

Fluorescent BallastsBasics

The *four* main starting methods using *magnetic* ballasts are:

- Hybrid or cathode cut out ballasts
- Instant start ballasts
- Preheat ballasts
- Rapid start ballasts

Fluorescent Ballasts: Electronic

liese

leed

liese

Advantages:

NALMCO

leed

• Higher lamp efficiency – 10%

liese

- Lower connected wattage
- Energy savings 25-85%
- Produces less heat
- Produces less noise sound rated 'A'
 - A,B,C,D scale
 - "A" being the lowest or best sound rating
- Life span up to 25 years
Fluorescent Ballasts: Specialty

Lee

liese

Lee

Lee

Cold Weather Ballasts

Leed

- Provide higher open circuit voltage to the lamp to aid in starting and maintaining design lumens
- Examples:

NALMCO

SINCE 1953

- 0 degrees for Slimline and 34/40 watt rapid start lamps
- -20 degrees for HO & VHO lamps

Dimming Ballasts

- Manufactured in both electronic and magnetic version
- Controlled by a manual dimmer or automatic controls such as a photo cell or daylight sensor
- Typically operate by varying the VOLTAGE to the ballast or via 0 – 10V signal that control lights output internally

HID Ballasts Basics

HID Ballasts are needed to:

- Start the lamp
- Control the current flow to the lamp

Leed

liese

liese

HID Ballast Components

Constant Wattage Isolated Transformer (CW)

A *reactor* is used when the supply voltage is sufficient to start the lamp on its own. Once the lamp starts, a choke controls the current.

A *high reactance autotransformer (HX)* provides the voltage needed to start the lamp and limits the current through a choke once the lamp starts. It is a combination of the reactor and the autotransformer.

A *constant wattage autotransformer (CWA)* uses a capacitor and a high reactance autotransformer in series with the lamp. A cap assists in controlling the current once the lamp is started. It continues to operate the lamp at a constant wattage regardless of supply voltage variations. It is the most commonly used ballast.

Ballast Circuits: CW

A *constant wattage isolated transformer (CW)* is similar to the constant wattage autotransformer except the secondary coil is isolated from the primary coil. This type is only used with 400W mercury lamps.

Core-and-Coil

Electronic

Potted Or Encapsulated

Encased And Potted (Also Called F-can)

Indoor Enclosed

Outdoor Weatherproof

Post-line

Potted Or Encapsulated

liese

Potted or Encapsulated

1

NALMCO

 Sealed or potted in a high temperature resin to minimize ballast noise

liese

liese

leee

Used for remote indoor applications

Encased and Potted (F-can)

• Similar to the "potted or encapsulated" but packaged similar to fluorescent ballasts

Potted Or Encapsulated

liese

liese

liese

leee

Indoor Enclosed

1

NALMCO

liese

• Used indoors where the ballast must be mounted remotely from the luminaire

Outdoor Weatherproof

- Designed to operate in all weather conditions separately from the luminaire
- Mounted to the base and sometimes filled with resin

liese

Post-Line

NALMCO

liese

- Core-and-coil ballasts that are elongated
- Potted and encased in high temperature resin

leece

liese

leee

• Designed for mounting inside round poles

Ballast Components

Ballast Components

leed

Lee

liese

Capacitor

leed

• Two types:

NALMCO

- Dry Film
- Oil Filled
- Corrects power factor
- Controls lamp wattage

Ignitor

- Provides high voltage pulse to ignite lamp arc
- Ballast Specific

liese

- Mount near, but not on
- MH: 35-150w
- PSMH: 175-1000w
- HPS: 35 1000w
- Requires pulse rated sockets

d wore a wore a wore a awore a awore a wor

HID Voltages

The seal

Lee

1

HID voltages

• 120V

NALMCO

SINCE 1953

- 208V
- 240V
- 277V
- 480V

Multi-tap

- 120V
- 208V
- 240V
- 277V

Dual-tap

 Operates at two common voltages

Lee .

5-tap

• 120V

The see

The seal

- 208V
- 240V
- 277V
- 480V

worea a worea worea a worea a worea a worea a v

Module Four LED's

LEDs give off blue light

ΔΓΙΠΤΥ

LEDs are offered in a variety of correlated color temperatures (CCT)

When selecting or comparing LED light sources, do not rely on the "names" of colors – these names are for marketing purposes only and may vary widely between manufacturers

CuityBran

LED is too expensive

00

ACHITY

LED equipment has a higher initial cost Total Cost of Ownership is less • Add motion sensing = +15% Add daylight harvesting = +8% 83% energy savings

here

leec

liese

LED is not as bright as traditional sources

ΑΓΙΙΙΤΥ

00

LEDs can be much brighter than traditional sources

Evaluate *LUMEN OUTPUT*, not *WATTS*

Brightness in Lumens	200+	400+	700+	900+	1300+
Incandescent	25w	40w	60w	75w	100w
CFL	6w	9w	12w	15w	20w
LED	4w	6w	10w	13w	18w

leed

leed

liese

ScuityBrand

for most applications today

Lumens per watt (LPW) = greater efficacy = energy savings

Excellent selection of color temperatures and color rendering

Exponentially longer expected life = reduced maintenance

Instant-on, instant-off

Controllable/Dimmable

Module Five Retrofits

Describe the characteristics and proper usage of luminaires and reflectors.

Explain the characteristics and proper usage of lighting controls.

Lee

Lee

Retrofit

NALMCO

Exchanging older lighting systems for newer ones is called *retrofitting*.

Lee

liese

liese

liese

liese

liese

lieve

Lenses and Louvers

liese

Reflectors

NALMCO

Motion Sensors

1

Codes and Regulations

Lighting Audits

Formulas

Lamp and ballast disposal

Louvers

4000

leed

liese

leece

liese

- Variety of sizes and cell configurations
 - 1⁄2" by 1⁄2"

VALMCO

- ³⁄₄" by ³⁄₄"
- Made of various plastics with silver, gold and white finishes
- Parabolic in design to provide reduced glare

lieve

Louvers

NALMCO

SINCE 1953

liese

liese

liese

liese

liese

- Typical shielding angle of 25%
- Deep cell parabolic louvers typically 2-3 and 4" deep cells are generally anodized aluminized finish

liese

liese

liese

lieve

Lenses and Louvers

liese

Reflectors

NALMCO

Motion Sensors

1

Codes and Regulations

Lighting Audits

Formulas

Lamp and ballast disposal

Reflectors

4000

leed

liese

liese

liese

leee

Reflector finishes consist of:

- White paint/powder coated
- Polished Aluminum
- Anodized Aluminum
- Silver Film

VALMCO

- All of which can have a reflectivity of over 85%
- Some produce different clarity of lamp image

Reflectors

4000

NALMCO

leed

liese

liese

liese

lieve

- Change the angle of light leaving the fixture to 25 degrees
- Fixtures retrofitted with a reflector that replaces the original ballast cover must carry a UL label for the application

liese

liese

liese

lieve

Lenses and Louvers

liese

Reflectors

NALMCO

Motion Sensors

1

Codes and Regulations

Lighting Audits

Formulas

Lamp and ballast disposal

Norea a Worea Worea a Worea a Worea a Wor

leed

• All available in wall, ceiling or fixture mount configuration

Lee

liese

liese

• Proper application is **key to success!**

Leeo

liese

liese

liese

lieve

Lenses and Louvers

liese

Reflectors

NALMCO

Motion Sensors

1

Codes and Regulations

Lighting Audits

Formulas

Lamp and ballast disposal

Codes and Regulations

- **EPA toxic leachate procedures** for a standard 4 T-12 fluorescent lamp must be less than 10mg or proper disposal must be performed
- Federal EPA takes precedent over any state that has not already adopted the federal guidelines regarding the disposal of hazardous waste

Codes and Regulations

liese

1

NALMCO

liese

 Section 410-15(a) of the National Electric Code states that fixtures weighing more than 6 lbs. and exceeding 16" in any dimension shall not be supported by the screw shell of the lamp holder

liese

liese

leee

 The National Energy Conservation Amendments of 1988 states that a 2-lamp, 4', 120 volt ballast must have a (BEF) Ballast Efficacy Factor of 0.90

Codes and Regulations

liese

liese

.....

 Section 410-130 (g) of the NEC states that, "all new and existing non-residential fluorescent lighting fixtures must have power disconnects installed to safeguard electricians from shock when replacing ballasts."

liese

liese

leee

liese

liese

liese

lieve

Lenses and Louvers

liese

Reflectors

NALMCO

Motion Sensors

1

Codes and Regulations

Lighting Audits

Formulas

Lamp and ballast disposal

wored a wored wored a wored a wored a wor

Lighting Audits and Summaries

liese

liese

Lee

6. Collect information about the fixture, ballast, lamp types, and how many of each are present.

NALMCO

liese

• Example:

Leeo

- Fixture: Ceiling
- Ballast: Electronic Normal Power Factor
- Lamp Types: Fluorescent
- Number: 100

7. Take the room measurements.

- For redesign purposes
- **Example:** Gym refixture of Metal Halide to LED

liese

liese

liese

lieve

Lenses and Louvers

liese

Reflectors

NALMCO

Motion Sensors

1

Codes and Regulations

Lighting Audits

Formulas

Lamp and ballast disposal

A typical Input Wattage Guide includes the following data fields:

- Fluorescent lamp description (e.g., F15T12 1.5' 15W)
- Number of lamps (e.g., 2)
- **Three types of ballasts** (standard magnetic, energy-saving magnetic, and electronic)

Input Wattage Guide

LIGHTING EFFICIENCY

NALMCO

INPUT WATTAGE GUIDE

					FLUORE	SCENT LAMPS				
							TIZ	FLU0	RESC	ENT LAMPS
				(for	Fixt norr	ure Input Wa mal power ba	itts allas	sts)		
Fluorescent Lamp Description	Nur of La	nber amps	*S N	Standard Iagnetic Ballast	E	nergy Saving Magnetic Ballast	1	Electron Ballas	ic t	Fluorescent Lamp Description
F15T12 1.5' 15W		1		-		21		-		F48T12 4' 116W HO
	1001122.0 4211110	-		33		10411204 001110	2		170	
		1	-	-			3	-		-
		1	-	- 45			4	-		-
			-					-		
		1	-	05			2		124	
	F25T123'25W		_				1	-	80	67
	F25T12.3' 25W	3	-	-		F72T126'57W		-		106
	F25T123'25W	4	-	-		F72T126'85W H0	1	-		-
	F30T123'25W	1	-	40		F72T126'85W H0		-		164
	F30T123'25W	2	-	64		F72T126'85W H0		-		
	F30T123'25W		-			F72T126'85W H0	4	-		-
	F30T123'25W	4	-			F84T127'65W	1	-		
	F30T123'30W	1	-	40			2	-	143	
	F30T123'30W	2	-				1	-		-
	F30T123'30W		-				2	-		
2	F30T123'30W	4	-		-			-	278	-
	F36T123'30W SLIM	1	-		-	F96T128'60W	1	-	74	67
	F36T123'30W SLIM	2	-		-	F96T128'60W	2	-		

Input Wattage Guide

NALMCO'

T12 U-BEND	FLUORESCENT LAMPS			T8	FLUORES	CENT LA	MPS					
	Standard Standard Efficiency, Efficiency, Energy Energy	Fluorescent	Number of	Energy Saving	Low Ballast Factor	Normal Ballast Factor	High Ballast Factor	Low Ballast Factor	Normal Ballast Factor	High Ballast Factor		
T12 U-BEND FLUORESCENT LAMPS						T8 FI	LUO	RESO	ENT	LAM	IPS	

												200						
		Fixt	ture Input W	/atts								Fixtu	ure I	nput Watt	s			
		(for nor	mal power l	ballasts)							5	Standa	rd B	allast Type	9	High I	Efficiency E	allast
Fluorescent	Number	Standard Efficiency,	Standard Efficiency, Energy Saving	Standard Efficiency, Energy Saving	L	Fluore amp De:	scent scription	Num of Lam	ber ps	Enerç Savin Magne	ay Ig Intic	Low Ballas Facto Electro	/ st or nic	Normal Ballast Factor Electronic	High Ballast Factor Electronic	Low Ballast Factor Electronic	Normal Ballast Factor Electronic	High Ballast Factor Electronic
Lamp	10	Electronic	Magnetic	Magnetic		F13T8	1' 13W	1		17		-		-	-	-	-	-
Description	Lamps	Ballast	Ballast	Ballast		F13T8	1' 13W	2		36		-		-	-	-	-	-
FT124'34W	2	60	67	84	_	F15T81	.5' 15W	1		20		-		-	-	-	-	-
	1	1	1		· _						3/	-	0/	33				
							F30T8 4' 30W ES		40	-		-	-					
							F30T8 4' 30W ES	2	82	-	54	-	-		-			
							F30T8 4' 30W ES		-	-		-	-		-			
							F30T8 4' 30W ES	4	-	-	104	-	-		-			
							F32T8 4' 32W			-		-						
							F32T8 4' 32W											
							F32T84'32W							84 1				
							F32T8 4' 32W	4										
							F32T8 4' 32W	6	-	-	-	-						
							F32T8 4' 32W	8	-	-	-	-			94			
							F32T8 4' 32W		-	-	-	-		338 44				
									-	-	-	-						
									-	-	-	-						
									-	-	-	-						
									-	-	-	-	-		-			
								5	-	-	-	-	-					
							E22T0 4' 22W VHLU		_	-	_	-	-					
							F36T8 4' 36M		_					735				
									-	-		-	-	_				
IN										-		-	-					
1						- 31		1		-		-	_					
				s 48 55 74	47	48 60			86	_		_	-					

LIGHTING EFFICIENCY

INPUT WATTAGE GUIDE

		F (for n	ixture Inpu iormal pow	it Watts ver ballasts)			Fixture I (for normal p	nput Watts ower ballasts
Fluorescent Lamp Description	Number of Lamps	Energy Magneti	Saving c Ballast	Electronic Ballast	Fluorescent Lamp Description	Number of Lamps	Energy Saving Magnetic Ballas	Electroni t Ballast
F4T56''4W	1	9	9	-)	F28T5 4' 28W	1	-	32
F13	T5 2' 13W	2	26	27	F54T5H0 4' 54W	2	- 117	
F14	T5 2' 14W	1	-	14	F54T5H0 4' 54W	3	- 179	
F14	T5 2' 14W	2	-	28	F54T5H0 4' 54W	4	- 234	
F24T	5 HO 2' 24W	1	-	27	F54T5H0 4' 54W	5	- 295	
F24T	5 HO 2' 24W	2	-	54	F54T5H0 4' 54W	6	- 358	
F21	T5 3' 21W	1	-	25	F54T5H0 4' 54W	8	- 468	
F21	T5 3' 21W	2	-	49	F54T5H0 4' 54W	10	- 468	
F39T	5H0 3' 39W	1	-	42	F39T5H0 3' 39W	1	- 40	
F39T	5H0 3' 39W	2	-		F39T5H0 3' 39W	2	- 77	
					F80T5H0 5' 80W	1	- 89	

Energy Calculations

The following table shows energy calculations for the **original** classroom and halls of a building:

liese

Location	Quantity	Fixture Type	Watts	Total
Classroom	10	2 x 4 4-lamp (std. ballasts and F40 lamps)	175	1,750
Halls	6	1 x 4 2 lamps	97	582
Note: Input watts for utilities.	rebate purposes n	nay vary by specific	Total	2,332

Energy Calculations

Energy Calculations

This table shows the energy calculations for a **proposed** lighting system for the space described:

Location	Quantity	Fixture Type	Watts	Total
Classroom	10	2 x 4 4-lamp (T8 electronic ballast and F32 lamps)	110	1,100
Halls	6	1x4 2 lamps T8	58	348
Note: Input wa	tts for rebate purp utilities	oses may vary by specific	Total	1,448

Energy Calculations

Based on the *two* previous tables:

Energy Calculations

Based on the previous tables:

1,000

. To dea to dea to dea a to dea a to dea a to d

Based on the *two* tables:

System Cost

Description	Quantity	Cost	Total
4 lamp ballasts & lamps	10	\$50.00	\$500.00
2 lamp ballasts & lamps	6	\$40.00	\$240.00
	Total Syste	em Cost	\$740.00

Based on the previous tables:

ROI (Return on Investment)

Annu	al Savings	/ 9	System	Cost= RC
	\$185.64	/	\$740	= 25.1%

Simple Payback (Yrs.) -without Utility Rebates

System Cost / Annual Savings = Payback \$740 / \$185.64 = 3.99 yrs.

*without utility rebates

Based on the previous tables:

Simple Payback (Yrs.) -with Utility Rebates

System Cost / Annual Savings = Payback

(\$740-\$250) \$490 / \$185.64 = 2.64 yrs.

*with \$250 utility rebates

Module Six Lighting Layout

Explain the calculations involved in lighting layout.

Area Calculations Dimensions

When considering lighting layout, one of the first things you must obtain are the *dimensions of the area*:

- Ceiling cavity height (hcc)
- Room cavity height (hrc)

Perimeter (P) = Total distance around a given space

P = A + B + C + D

(B)

will go.

Area (A) = Length (L) * Width (W) of a given space

$A = L \times W$

Next, calculate the *area* (*A*), which is the length of the room times the width of the room.

Light Loss Factor (LLF)

LLF = LLD x LDD

LLD = Lamp Lumen Depreciation (provided by Mfg) LDD = Luminaire Dirt Depreciation

Another key factor is the coefficient of utilization (CU).

Initial Lamp Lumens

Lumen output for a new lamp

Foot candles (FC) per Luminaire

FC per Luminaire = (Fixture lamp lumens)(CU)(LLF) ÷ Area of space

Foot candles (FC) are produced by each fixture.

Average Illuminance Level (AIL)

AIL = FC per Luminaire x # of Luminaires

There are *three cavity ratios*:

- Ceiling cavity ratio (CCR)
- Room cavity ratio (RCR)
- Floor cavity ratio (FCR)

Cavity Ratio Formula

Cavity Ratio Formula =
$$\frac{5h(L + W)}{L \times W}$$

Lighting Layout Average Illuminations

Space to be Considered

Average Illuminance: Example 1

liese

liese

liese

Atmosphere:

NALMCO

• Med

Clean/Relamp:

• Every 24 months

lies

leed

Reflectance:

- Ceiling 80
- Wall 50
- Floor 20

Dimensions:

- Area 30' x 32'
- Ceiling Height 10'
- Work plane Height 2 1/2'

Lighting Equipment:

- 2' x 4'- 4 lamp Lay-in Luminaire/Flat Prismatic Lens
- 4 20 Watt/2700 Lumen 4100K color temp LED tubes
- Lamp Lumen Depreciation (LLD) = 1.0 (per manufacturer)

Dirt Depreciation Chart

MONTHS

Calculations

there

Lee

Sea.

NALMCO'

6000

		Coefficients of Utilization - Zonal Cavity Method											
R	CC 80 70 50							0					
R	W	70 50 30 10 70 50 30 10 50 30 1		10	0								
	1	0.90	0.86	0.83	0.80	0.88	0.85	0.82	0.79	0.81	0.79	0.76	0.70
	2	0.83	0.76	0.71	0.67	0.81	0.75	0.70	0.66	0.72	0.68	0.64	0.60
	3	0.76	0.68	0.61	0.56	0.74	0.66	0.61	0.56	0.64	0.59	0.55	0.51
	4	0.70	0.61	0.54	0.49	0.68	0.60	0.53	0.48	0.57	0.52	0.48	0.45
R	5	0.65	0.55	0.48	0.42	0.63	0.54	0.47	0.42	0.52	0.46	0.42	0.39
R	6	0.60	0.49	0.42	0.37	0.58	0.49	0.42	0.37	0.47	0.41	0.37	0.35
	7	0.56	0.45	0.38	0.33	0.54	0.44	0.38	0.33	0.43	0.37	0.33	0.31
	8	0.52	0.41	0.34	0.30	0.51	0.41	0.34	0.30	0.40	0.34	0.30	28.00
	9	0.49	0.38	0.31	0.27	0.47	0.37	0.31	0.27	0.36	0.31	0.27	0.25
	10	0.46	0.35	0.29	0.25	0.44	0.35	0.29	0.24	0.34	0.28	0.24	0.23

0000

The seal

Lee

Lee

6000

6000

Calculations: Example 1

liese

NALMCO

leed

 Reference printed slides & practice calc answer pages

liese

liese

liese

Have on your desk for review and note taking during the calculations

Average Illuminance: Example 1

liese

liese

liese

Atmosphere:

NALMCO

• Med

Clean/Relamp:

• Every 24 months

liese

liese

Reflectance:

- Ceiling 80
- Wall 50
- Floor 20

Dimensions:

- Area 30' x 32'
- Ceiling Height 10'
- Work plane Height 2 ¹/₂'

Lighting Equipment:

- 2' x 4'- 4 lamp Lay-in Luminaire/Flat Prismatic Lens
- 4 20 Watt/2700 Lumen 4100K color temp LED tubes
- Lamp Lumen Depreciation (LLD) = 1.0 (per manufacturer)

Practice Calculations: Example 1

Dimensions

Ceiling Cavity Height (hcc) Room Cavity Height (hrc) Floor Cavity Height (hfc) Perimeter (p)

Area (A) Ceiling Cavity Ratio (CCR) Room Cavity Ratio (RCR) Floor Cavity Ratio (FCR) Initial Lumens @ LED Tube Total Lumens @ Luminaire

<u>Cavity Ratios:</u> <u>5h(L + W)</u> L x W

Average Illuminance: Example 1

liese

liese

liese

Atmosphere:

NALMCO

• Med

Clean/Relamp:

• Every 24 months

lies

leed

Reflectance:

- Ceiling 80
- Wall 50
- Floor 20

Dimensions:

- Area 30' x 32'
- Ceiling Height 10'
- Work plane Height 2 1/2'

Lighting Equipment:

- 2' x 4'- 4 lamp Lay-in Luminaire/Flat Prismatic Lens
- 4 20 Watt/2700 Lumen 4100K color temp LED tubes
- Lamp Lumen Depreciation (LLD) = 1.0 (per manufacturer)

Dirt Depreciation Chart

MONTHS

Calculations

there

Lee

Sea.

NALMCO'

6000

		Coefficients of Utilization - Zonal Cavity Method											
R	CC 80 70 50							0					
R	W	70 50 30 10 70 50 30 10 50 30 1		10	0								
	1	0.90	0.86	0.83	0.80	0.88	0.85	0.82	0.79	0.81	0.79	0.76	0.70
	2	0.83	0.76	0.71	0.67	0.81	0.75	0.70	0.66	0.72	0.68	0.64	0.60
	3	0.76	0.68	0.61	0.56	0.74	0.66	0.61	0.56	0.64	0.59	0.55	0.51
	4	0.70	0.61	0.54	0.49	0.68	0.60	0.53	0.48	0.57	0.52	0.48	0.45
R	5	0.65	0.55	0.48	0.42	0.63	0.54	0.47	0.42	0.52	0.46	0.42	0.39
R	6	0.60	0.49	0.42	0.37	0.58	0.49	0.42	0.37	0.47	0.41	0.37	0.35
	7	0.56	0.45	0.38	0.33	0.54	0.44	0.38	0.33	0.43	0.37	0.33	0.31
	8	0.52	0.41	0.34	0.30	0.51	0.41	0.34	0.30	0.40	0.34	0.30	28.00
	9	0.49	0.38	0.31	0.27	0.47	0.37	0.31	0.27	0.36	0.31	0.27	0.25
	10	0.46	0.35	0.29	0.25	0.44	0.35	0.29	0.24	0.34	0.28	0.24	0.23

0000

The seal

Lee

Lee

6000

6000

Practice Calculations: Example 1

liese

leed

liese

Calculations

Lamp Lumen Depreciation (LLD) Luminaire Dirt Depreciation (LDD) Light Loss Factor (LLF) Coefficient of Utilization (CU) Foot Candle (FC) @ Luminaire Average Illuminance Level (AIL)

leed

liese

Foot candle Formulas

FC per Luminaire =

NALMCO

(Fixture lamp lumens)(CU)(LLF) area of space

AIL = FC per Luminaire x # of Luminaires

Space to be Considered

Average Illuminance : Example 2

liese

liese

liese

Atmosphere:

NALMCO

SINCE 1953

• Med

Clean/Relamp:

• Every 24 months

liese

leed

Reflectance:

- Ceiling 80
- Wall 50
- Floor 20

Dimensions:

- Area 34' x 34'
- Ceiling Height 12'
- Work plane Height 3'

Lighting Equipment:

- 2' x 4'- 3 lamp Lay-in Luminaire/Flat Prismatic Lens
- 3 20 Watt/2700 Lumen 4100K color temp LED tubes
- Lamp Lumen Depreciation (LLD) = 1.0 (per manufacturer)

Space to be Considered

34'

34'

Dirt Depreciation Chart

MONTHS

Calculations

there

Lee

Sea.

NALMCO'

6000

		Coefficients of Utilization - Zonal Cavity Method											
R	CC 80 70 50							0					
R	W	70 50 30 10 70 50 30 10 50 30 1		10	0								
	1	0.90	0.86	0.83	0.80	0.88	0.85	0.82	0.79	0.81	0.79	0.76	0.70
	2	0.83	0.76	0.71	0.67	0.81	0.75	0.70	0.66	0.72	0.68	0.64	0.60
	3	0.76	0.68	0.61	0.56	0.74	0.66	0.61	0.56	0.64	0.59	0.55	0.51
	4	0.70	0.61	0.54	0.49	0.68	0.60	0.53	0.48	0.57	0.52	0.48	0.45
R	5	0.65	0.55	0.48	0.42	0.63	0.54	0.47	0.42	0.52	0.46	0.42	0.39
R	6	0.60	0.49	0.42	0.37	0.58	0.49	0.42	0.37	0.47	0.41	0.37	0.35
	7	0.56	0.45	0.38	0.33	0.54	0.44	0.38	0.33	0.43	0.37	0.33	0.31
	8	0.52	0.41	0.34	0.30	0.51	0.41	0.34	0.30	0.40	0.34	0.30	28.00
	9	0.49	0.38	0.31	0.27	0.47	0.37	0.31	0.27	0.36	0.31	0.27	0.25
	10	0.46	0.35	0.29	0.25	0.44	0.35	0.29	0.24	0.34	0.28	0.24	0.23

0000

The seal

Lee

Lee

6000

6000

Calculation: Example 2

liese

NALMCO

leed

 Reference printed slides & practice calc answer pages

liese

liese

liese

• Have on your desk for review and note taking during the calculations

Practice Calculations: Example 2

Dimensions

Ceiling Cavity Height (hcc) Room Cavity Height (hrc) Floor Cavity Height (hfc) Perimeter (p)

Area (A) Ceiling Cavity Ratio (CCR Room Cavity Ratio (RCR) Floor Cavity Ratio (FCR) Initial Lumens @ LED Tube Total Lumens @ Luminaire

Average Illuminance : Example 2

liese

liese

liese

Atmosphere:

NALMCO

SINCE 1953

• Med

Clean/Relamp:

• Every 24 months

liese

leed

Reflectance:

- Ceiling 80
- Wall 50
- Floor 20

Dimensions:

- Area 34' x 34'
- Ceiling Height 12'
- Work plane Height 3'

Lighting Equipment:

- 2' x 4'- 3 lamp Lay-in Luminaire/Flat Prismatic Lens
- 3 20 Watt/2700 Lumen 4100K color temp LED tubes
- Lamp Lumen Depreciation (LLD) = 1.0 (per manufacturer)

Space to be Considered

34'

34'

Dirt Depreciation Chart

MONTHS

Calculations

there

Lee

Sea.

NALMCO'

6000

		Coefficients of Utilization - Zonal Cavity Method											
R	CC 80 70 50							0					
R	W	70 50 30 10 70 50 30 10 50 30 1		10	0								
	1	0.90	0.86	0.83	0.80	0.88	0.85	0.82	0.79	0.81	0.79	0.76	0.70
	2	0.83	0.76	0.71	0.67	0.81	0.75	0.70	0.66	0.72	0.68	0.64	0.60
	3	0.76	0.68	0.61	0.56	0.74	0.66	0.61	0.56	0.64	0.59	0.55	0.51
	4	0.70	0.61	0.54	0.49	0.68	0.60	0.53	0.48	0.57	0.52	0.48	0.45
R	5	0.65	0.55	0.48	0.42	0.63	0.54	0.47	0.42	0.52	0.46	0.42	0.39
R	6	0.60	0.49	0.42	0.37	0.58	0.49	0.42	0.37	0.47	0.41	0.37	0.35
	7	0.56	0.45	0.38	0.33	0.54	0.44	0.38	0.33	0.43	0.37	0.33	0.31
	8	0.52	0.41	0.34	0.30	0.51	0.41	0.34	0.30	0.40	0.34	0.30	28.00
	9	0.49	0.38	0.31	0.27	0.47	0.37	0.31	0.27	0.36	0.31	0.27	0.25
	10	0.46	0.35	0.29	0.25	0.44	0.35	0.29	0.24	0.34	0.28	0.24	0.23

0000

The seal

Lee

Lee

6000

6000

Practice Calculations: Example 2

liese

liese

liese

Calculations

liese

liese

Lamp Lumen Depreciation (LLD) Luminaire Dirt Depreciation (LDD) Light Loss Factor (LLF) Coefficient of Utilization (CU) Foot Candle (FC) @ Luminaire Average Illuminance Level (AIL) **Foot candle Formulas**

FC per Luminaire =

NALMCO

(Fixture lamp lumens)(CU)(LLF) area of space

Lighting Layout Footcandles

Foot candles (FC) are produced by each fixture and are calculated like this:

(Fixture lamp lumens)(CU)(LLF) ÷ Area of space = FC per luminaire

Before – 250w MH, 295w

50% energy savings More even illumination

Above are the five main distribution types for exterior area lighting. Each type has certain applications that it is best suited for.

Type I – Used for pathways, narrow roadways and at the front row of car dealerships **Type II** - Also often used on roadways, when you need light distributed very far to the sides, but not very far forward

Type III – Provides not as much distribution to the sides, but more forward distribution **Type IV** - Sometimes just called "Forward Throw." It does just that, it distributes light forward

from the pole. Most suitable along the perimeter of sites

Type V – Can be round or square. It distributes light relatively evenly in all direction from the poles. Most suitable in the center of larger sites

In a nearby parking lot, there are **9 poles**, each having one **22,317 lumen post top luminaire** with Type 5 distribution mounted at 30'. The manufacturers specifications for the post top luminaires are provided in the following table

Practice Calculations: Footcandles

The seal

The seal

Lee .

NALMCO"

6000

Lee

The seal

liese

lieed

Lee

Luminaire Used:

 RSX2 LED P3 40K R5 (22,317 lumens)

1

liese

liese

• Scale: 1 Square = 1 Mount Height

	Foo	Foot-candle Values for Following Curves										
Mounting Height	Α	в	С	D	Е	F						
10'	10.3	7.4	5.7	3.7	2.2	1.4						
15'	4.6	3.3	2.5	1.6	1.0	0.6						
20'	2.6	1.8	1.4	0.9	0.6	0.4						
25'	1.6	1.2	0.9	0.6	0.4	0.2						
30'	1.1	0.8	0.6	0.4	0.3	0.2						

Practice Calculations: Footcandles

	Foo	Foot-candle Values for Following Curves										
Mounting Height	Α	в	С	D	Е	F						
10'	10.3	7.4	5.7	3.7	2.2	1.4						
15'	<mark>4.6</mark>	3.3	2.5	1.6	1.0	0.6						
20'	2.6	1.8	1.4	0.9	0.6	0.4						
25'	1.6	1.2	0.9	0.6	0.4	0.2						
30'	1.1	0.8	0.6	0.4	0.3	0.2						

Lee

Les)

A.

Lee .

Les .

Footcandle Values *Point*

Point 1 Point 2 Point 3 Point 4 Point 5

Practice Calculations: Footcandles

The seal

The seal

Lee .

NALMCO"

6000

Lee

The seal

Practice Calculations: Footcandles

	Foo	Foot-candle Values for Following Curves										
Mounting Height	Α	в	С	D	Е	F						
10'	10.3	7.4	5.7	3.7	2.2	1.4						
15'	<mark>4.6</mark>	3.3	2.5	1.6	1.0	0.6						
20'	2.6	1.8	1.4	0.9	0.6	0.4						
25'	1.6	1.2	0.9	0.6	0.4	0.2						
30'	1.1	0.8	0.6	0.4	0.3	0.2						

Lee

Les)

A.

Lee .

Les .

Footcandle Values *Point*

Point 1 Point 2 Point 3 Point 4 Point 5

Practice Calculations: Footcandles

The

The seal

Lee .

NALMCO"

6000

Lee

A.

Practice Calculations: Footcandles

	Foot-candle Values for Following Curves						
Mounting Height	Α	в	С	D	Е	F	
10'	10.3	7.4	5.7	3.7	2.2	1.4	
15'	<mark>4.6</mark>	3.3	2.5	1.6	1.0	0.6	
20'	2.6	1.8	1.4	0.9	0.6	0.4	
25'	1.6	1.2	0.9	0.6	0.4	0.2	
30'	1.1	0.8	0.6	0.4	0.3	0.2	

Lee

Les)

A.

Lee .

Les .

Footcandle Values *Point*

Point 1 Point 2 Point 3 Point 4 Point 5

Practice Calculations: Footcandles

The

The seal

Lee .

NALMCO"

6000

Lee

A.

Practice Calculations: Footcandles

	Foot-candle Values for Following Curves						
Mounting Height	Α	в	С	D	Е	F	
10'	10.3	7.4	5.7	3.7	2.2	1.4	
15'	<mark>4.6</mark>	3.3	2.5	1.6	1.0	0.6	
20'	2.6	1.8	1.4	0.9	0.6	0.4	
25'	1.6	1.2	0.9	0.6	0.4	0.2	
30'	1.1	0.8	0.6	0.4	0.3	0.2	

Lee

Les)

A.

Lee .

Les .

Footcandle Values *Point*

Point 1 Point 2 Point 3 Point 4 Point 5

Practice Calculations: Footcandles

The

The seal

Lee .

NALMCO"

6000

Lee

A.

Practice Calculations: Footcandles

	Foot-candle Values for Following Curves						
Mounting Height	Α	в	С	D	Е	F	
10'	10.3	7.4	5.7	3.7	2.2	1.4	
15'	<mark>4.6</mark>	3.3	2.5	1.6	1.0	0.6	
20'	2.6	1.8	1.4	0.9	0.6	0.4	
25'	1.6	1.2	0.9	0.6	0.4	0.2	
30'	1.1	0.8	0.6	0.4	0.3	0.2	

Lee

Les)

A.

Lee .

Les .

Footcandle Values *Point*

Point 1 Point 2 Point 3 Point 4 Point 5

Module Seven Legislation

 Describe legislation pertaining to lighting systems, including energy conservation credits and disposal regulations.

Lighting Systems

- Up to \$1.80/sq. ft. Tax Credit to Owners for installation of energy efficient systems
- Up to \$0.60/sq. ft. *Tax Benefit to Lighting Contractors* for installation of energy savings lighting systems in new or existing public buildings owned by federal, state or local government

Glossary

here

Arc (Arc Tube)

NALMCO

SINCE 1953

Intense luminous discharge formed by the passage of electrical current across a space between two electrodes.

lees

Auto-Restrike

Circuitry used to restart the lamps without resetting the power to the ballast.

leed

Ballast Efficacy Factor (BEF)

Measure used to compare various lighting systems based upon light output and input power. BEF= Ballast Factor x 100 / Input Watts

leed

leed

leed

Ballast Factor (BF)

Measure of light output from lamp operated by commercial ballast, as compared to laboratory standard reference ballast specified by ANSI

Ballast Losses

Power that is supplied to the ballast but is not converted into light energy.

Capacitor

Device in ballast that stores electrical energy.

**See handout for complete glossary

Module Eight Sustainability

Learning Objectives

4000

Describe sustainability with regard to manufacturing, packaging, and transporting

NALMCO

Explain financial impacts of lighting systems including life cycle costs and energy calculations

Describe lumen delivery and control systems and how they impact tenants

Explain the societal and environmental impacts of lighting systems

Meets the needs of the present without compromising the ability of future generations to meet their own needs.

n worza a worza worza a worza a worza a wor

Definitions & Terminology

leed

liese

liese

liese

Terms and concepts you should be familiar with include:

- Productivity
- Recycler

NALMCO

UNCE 1953

- Recycling
- Renewable Materials

liese

- Renewable
 Resources
- Scotopic
- Supply Chain

- Sustainability
- TCLP
- Toxicity
- Transporter
- USGBC
- Waste Management
- Waste Stream
- Watts

MPT Sustainability Manufacturing, Packaging and Transporting

MPT Sustainability

liese

liese

liese

liese

leed

Processes and strategies used to make and to bring a particular product to its intended use.

.....

VALMCO

Which product and/or manufacturer effectively performs these functions while minimizing environmental impact and energy usage?

Manufacturing Materials Used

Packaging Methods

Transportation Choices

. To dea a to dea to dea a to dea a to dea a to d

Manufacturing Considerations

tere

4000

leece

Where and how is the product manufactured?

VALMCO

liese

liese

- What are the practices within the manufacturer's facility?
- Does the manufacturer recycle products in the process?

Packaging Considerations

liese

liese

leed

liese

How is the product packaged?

liese

ALMCO

leed

Is packaging made of recycled materials?

Are there local options for product procurement?

Photo credit: animaster via VisualHunt / CC

How is the product transported?

How far is it transported?

Are we unnecessarily disposing of products that could be re-used or retrofitted?

Life Cycle Costs and Energy Usage The Impact of Design

Ensuring that long life products and intelligent maintenance practices are <u>uncompromised by lower</u> <u>initial costs</u>

• Weighed and analyzed in the design stage

Sustainable Life Cycle Costs

CLMCs must be familiar with:

- General life expectancies of various lighting systems
- Effect(s) of external factors on expected life

- Control systems
- Occupancy patterns
- Space conditioning
- Environmental conditions

Convey the impact of design choices on Life Cycle Costs

Financial Impacts

Environmental Impacts

Societal Impacts

. To dea ato dea to dea ato dea ato dea ato d

Energy Considerations

liese

leed

Identify and **quantify** all factors which allow for:

• The most accurate representation of an existing lighting system

leed

liese

liese

• Potential improvements to that system

Energy Calculations

liese

liese

A CLMC must:

VALMCO

4000

 Know the difference between demand and energy charges

liese

liese

lieve

- Know the effect of the ballast factor on the energy consumption in a lighting system
- Be able to analyze different systems for the most effective solution that meets the customer's needs

Modifications will have impacts on other building systems, such as the HVAC system.

Calculate the impact by converting <u>watts to</u>
 <u>BTU/Hr</u>

1 watt = 3.412 BTU/Hr 1 BTU/Hr = 0.293 watts

Lumen Delivery Systems Delivery SystemsComprehensive Content Area of the Exam

Lumen Delivery Systems

leec

tere

liese

4000

IALMCO

A CLMC uses the knowledge accumulated over the course of their career to design the most sustainable lighting system that meets the needs of the system's users.

CLMC candidates must have an understanding of the following:

All associated **costs** of a lighting system in every phase of operation

How each system component affects the overall performance of the system

Creating a usable lighting system for all its users

The CLMC must consider a variety of issues when it comes to designing or upgrading exterior lighting systems.

Whether designing or upgrading exterior lighting systems, consider the following:

ASHRAE Standards and Terminology for Design and Analysis

Usability of Different Light Sources

Maintenance Practices and Future Upgrades or Enhancements

Control Systems Fast Growing and Complex Lighting Design Component

Sustainable Control Systems

liese

liese

leee

Design considerations:

1

NALMCO

liese

liese

- Whether the controls are an enhancement rather than just a cost-saving measure
- Effectiveness of various technologies in the overall lighting strategy
- Functionality as it relates to tenant comfort and productivity

Sustainable Control Systems

liese

liese

Lighting Controls

Stand-alone control of a space's lighting

liese

liese

Includes:

NALMCO

- Timeclocks
- Photocells
- Occupancy sensors

Lighting Control Systems

Networked, intelligent systems that facilitate lighting controls

leed

Devices such as:

- Relays
- Light control switches
- Signals from other entities (*i.e. fire alarm or BMS*)

i vorea a vorea vorea a vorea a vorea a vor

Question

liese

liese

liese

ASHRAE/IES Standard (90.1-2010 and -2013) requires automatic shut off if _____ or more of the connected lighting load is replaced as part of a lamp-plus-ballast retrofit.

liese

tere

liere

Question

liese

liese

4000

ASHRAE/IES Standard (90.1-2016) and (IECC 2018) require that when occupancy sensors are used, they must turn controlled interior general lighting OFF within ____ minutes of the space being vacated.

4000

tere

Question

liese

liese

liese

liese

.....

ASHRAE/IES Standard (90.1-2019) specifies a maximum lighting power density (LPD) of 0.70 W/sq. ft. for an open office application. The current system used a T8 fluorescent system with electronic ballasts that yields a lighting power density of 1.0 W/sq. ft. Which of the following solutions gives the BEST opportunity to meet or exceed the LPD target?

CLMCs need to recognize control opportunities and the requirements involved:

• Integrate lighting controls with other systems' controls to maximize lighting performance

Direct Effect on Employee Productivity and Comfort Levels

Weigh all considerations when analyzing a lighting system, including:

- Will the lighting affect the tenant's productivity?
- Does the lighting support the tasks, work, culture and intended use of the space?

According to the *National Lighting Bureau*, lighting affects performance both directly and indirectly, which in turn influences overall productivity:

- How much light?
- What type of light?

Useless and Ineffective Lighting System

Environmental and Societal Impacts

CLMC should have knowledge of:

- Raw material content in equipment
- Energy consumption's effect on carbon footprint, pollutants, safety

Major Factor:

Use of electricity during peak demand times causes the generation of electricity with the use of **less efficient** and **more polluting** methods.

Environmental Impacts

liese

liese

Four key areas of lighting generate carbon footprints:

liese

liese

- Extracting the raw materials needed to make the lighting components
- Manufacturing the product
- Transporting the product through the supply chain
- The energy consumed while the product is in use

Disposal and Recycling

liese

liese

liese

liese

 Know disposal and recycling techniques and how they affect the environment

4000

NALMCO

liese

 Existing systems must be reviewed for reusable components before specifying a new product

e worza a worza worza a worza a worza a wor

 Generators are divided into three categories based upon the quantity of waste they produce.

Hazardous Waste Generators

Lee

liese

liese

Leeo

LQGs

NALMCO

leed

Large Quantity

- 1,000 kg or more per month, or
- 1 kg per month of acutely hazardous waste, or
- > 100 kg per month acute spill residue or soil

SQGs

Small Quantity

> 100 kg per
 month, but
 < 1,000 kg per
 month of
 hazardous waste

CESQGs

Conditionally Exempt Small Quantity

- 100 kg or less per month, or
- 1 kg or less/month acutely hazardous waste, or
- < 100 kg per month acute spill residue

Dark sky issues are a main concern, causing light pollution. Adverse effects include:

- Glare
- Skyglow
- Light trespass
 - CLMCs should know accepted strategies for resolving light trespass concerns

